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Module 8 Model evaluation

Welcome back to this online open course about species distribution modelling. Now we have
looked at the different models you can use to predict species distributions, it is important to
understand how to interpret the output of a model. A vital step in modelling is assessing the
accuracy of the model prediction, commonly called ‘validation’ or ‘evaluation’. In this module, |
will explain how you can do this.

There is a variety of different outputs that your species distribution model will produce, and that
you can evaluate to decide whether your model is valid. While the focus in model evaluation is
often on the predictive performance of the model, which can be measured by a variety of
evaluation statistics, it is important to also do a reality check of the visual outputs such as the
predicted distribution map and the response curves of the environmental variables.

Let’s start with looking at the map with the predicted distribution of your species. We suggested
to do a bit of research on your species before you design your species distribution model, so
you should have some idea of what the likely distribution of the species is. When you look at the
map produced by the species distribution model you should critically evaluate whether the
predicted distribution is plausible, while taking into account factors such as dispersal barriers.
For example, if you look at this map with the predicted distribution of grey-headed flying fox, we
see that this species is predicted to be present in some areas in Western Australia, while the
species has never been observed there. So, while the conditions in this area might be suitable
for the species to survive, there could be natural barriers that prevent the species from
dispersing there.

Next, you can have a look at the response curves for each environmental variable. These show
the probability of occurrence for each value of the environmental variable, while taking into
account the other variables that were put into the model. With the knowledge that you have
about your species, you can check whether these response curves are conform the known
tolerances to the environmental conditions. For example, if your species is known to not survive
above certain temperatures, you expect this to be reflected in the response curve.



The predictive performance of the model can be assessed with a suite of quantitative measures,
that | refer to here as the evaluation statistics. To obtain these statistics you first calibrate the
model with a set of training data, and then validate the model with a set of test data. This
validation is best done with a set of test data that is independent of the training data. This
means that this should be data that is not used to fit the model. A common approach that is
used to achieve this is called cross-validation.

In cross-validation the total dataset, which means all your records of presences and absences
of a species, is divided into a predefined number of subsets, also called folds. The model is
calibrated with all but one of the folds, and the fold that is not used in calibration is used for
validation. This process is repeated as many times as the number of folds, so in this example 10
times, and each of the folds is used once as the testing dataset. The results obtained with the
testing data from all 10 runs are then averaged to produce a single estimation. 10-fold cross
validation as in this example is commonly used, and often the default in packages that run
species distribution models, but in theory you can use any number of folds such as 3-fold or
5-fold. The extreme version is the leave-one-out cross-validation approach, in which the process
is repeated as many times as there are data points, and for each run only 1 data point is left out
to train the model, and that one point is used for validation.

So, the cross-validation approach averages the results of the test data of the different runs into
a single probability score of species occurrence for each location on the map. Most algorithms
produce this probability score as a continuous response ranging from 0, which represents a low
probability of presence, to 1, which represents a high probability of presence. To calculate the
evaluation statistics, these probabilistic predictions are commonly converted to a categorical
prediction, which means that for any given point it is predicted whether a species could be
present or absent. This conversion is based on a threshold value of the probability prediction.
By convention, this threshold is often set at 0.5, which means that for each location with a
probability above 0.5, the prediction is positive, thus the species is present, and locations with a
probability below 0.5 are predicted to be negative, thus the species is absent. However, there
are a lot of different methods for selecting the threshold value depending on factors such as the
overall error pattern of the model and the ratio of presence vs absence points.

The categorical predictions of a species distribution model, thus whether a species is present or
absent in a particular site, can either be correct or incorrect. The predictions are compared to
the actual observations, and a correct prediction is referred to as a true positive for presences
and a true negative for absences. The two different types of errors that can be made are a ‘false
positive’ when the model predicts a species to be present in places where it has not been
observed, or a ‘false negative’ means that the model predicted a species to be absent in places
where it is observed to be present. A table in which the performance of a model is summarized
like this is called a contingency table. | will explain how a few of the evaluation statistics are
calculated from the elements of the contingency table.



A simple measure of the predictive performance of a model is Accuracy, which simply measures
the proportion of correctly predicted cases by summing the true positives and true negatives
and divide this sum by the total count. The opposite function of Accuracy is the Misclassification
Rate, which sums all the false positives and false negatives and divides this by the total count.
Although these measures are easy to understand and interpret, they don’t distinguish between
the two error types, false positives and false negatives. Additionally, they don’t take into account
the proportion of presence records relative to the absence records. To illustrate this with an
extreme example, if you would be modeling the distribution of a rare species with a low number
of observed presences, the model can have an accuracy of 0.9 by just predicting all sites to be
absent. This corresponds to a misclassification rate of 0.1, thus only 10% of all records were
predicted incorrectly, but the prediction of zero presences is obviously not correct. Therefore,
other evaluation statistics that are used more often are the True and False Positive Rate, and
the True and False Negative Rate.

The True Positive Rate refers to the proportion of observed presences that are correctly
predicted. This is calculated as the number of true positives divided by the sum of true positives
and false negatives. The True Positive Rate is often named Sensitivity. The opposite of the True
Positive Rate is the False Negative Rate. A high True Positive Rate indicates a good
performance of the model. Like in this example, the True Positive Rate is 0.9, which
automatically means that the False Negative Rate is 0.1. This means that 90% of the observed
presences are correctly predicted as being present. Note that these two statistics can be
calculated if you only have presence data.

The True Negative Rate refers to the proportion of observed absences that are correctly
predicted. This is calculated as the number of true negatives divided by the sum of false
positives and true negatives. The True Negative Rate is also referred to as Specificity.

The opposite of the True Negative Rate is the False Positive Rate. Again, a high True Negative
Rate indicates a good performance of the model. If we look again at the example, we find a
True Negative Rate of 0.96, and a False Positive Rate of 0.04, indicating that 96% of the
observed absences are correctly predicted. You can check whether this prediction is statistical
significant by testing whether the True Positive or Negative Rates are higher than would be
expected by chance.

Because the elements of the contingency table are dependent on the value of the probability
threshold, the threshold value regulates the outcomes of the evaluation statistics. With an
increasing threshold value, the number of predicted presences will decrease. Of course the
number of observed presences remains the same, and thus the proportion of presences that is
correctly predicted will decrease. | will illustrate this with a graph with the threshold value on the
x-axis, and the value of the True Positive and True Negative Rate on the y-axis. With an
increasing threshold value, the model will predict more absences and less presences, and thus
the number of observed presences that are correctly predicted will decrease. This means that
the True Positive Rate decreases with an increasing threshold value, while the True Negative
Rate increases.
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The question is how do you select the threshold value to evaluate your model? There are a
number of different methods that you can use to select the threshold value in your model, and |
will highlight a few of these. A common default method is to stick with a value of 0.5, but this is
often not appropriate. It works well when the data has an even number of presences and
absences, but not always, since the model needs to predict absences and presences equally
well. In this example, at the value of 0.5 the True Positive Rate is only 0.12, meaning that only
12% of the observed presences were correctly predicted. Another method is to choose for a
fixed True Positive Rate, such as 95%, which corresponds here to a low threshold value. But
this option automatically results in a low True Negative Rate, and thus a high False Positive
Rate. Therefore, other methods that trade off the successful predictions and errors are more
often used. For example, selecting the threshold where the True Positive Rate is equal to the
True Negative Rate. This is the point in the graph where the two lines cross over. You can also
choose the value where the sum of the True Positive and the True Negative rate is maximized.

One performance measure that is also commonly used, and not dependent of the threshold
probability value is the Relative Operating Characteristic or ROC plot. The ROC plot is a graph
with the False Positive Rate on the x-axis and the True Positive Rate on the y-axis plotted
across the range of possible thresholds. A perfect model would only include true positives and
no false positives, displayed by the dot in this graph, representing a false positive rate of 0, and
a true positive rate of 1. The curve across all possible thresholds would look like this. A random
guess of the model would result in a point along the diagonal line from the left bottom to the
right corner. This is the divider of the ROC space. Any point above the line represents
predictions that are better than random, whereas points below the line represent poor
predictions. The value for ROC is the area under the curve (AUC), and is calculated by
summing the area under the ROC curve. A value of 0.5 thus represents a random prediction,
and values above 0.5 indicate predictions better than random. The closer the ROC curve follows
the y-axis, the larger the area under the curve, and thus the more accurate the model. In
general, AUC values of 0.5-0.7 are considered low and represent poor model performance,
values between 0.7 and 0.9 are considered moderate, and values above 0.9 represent excellent
model performance.

Like with all aspects of species distribution models, the selection of the evaluation statistics that
you use to evaluate your model depends on various factors. For a start, the evaluation statistics
that are available depend on the type of data that you use in your model. Some statistics need
both presence and absence data to be calculated, and can thus not be used if you only use
presence data. Another thing to keep in mind is your research question, or how you are going to
apply the outcomes of the model. Some statistics are better to evaluate predictions of the actual
distribution of a species, whereas others might be more useful If you are interested in the
potential distribution, for example when you study an invasive species. And as | have mentioned
in earlier modules, you may also want to compare model outputs and evaluation statistics
across various algorithms to get a better insight into which algorithm has performed better with
your data.
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We have come to the end of this module about model evaluation. In the next module, we are
going to look at one application of species distribution models in particular: how they can be

used in combination with climate change projections to predict future species distributions. |

hope to see you back there.
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